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Abstract

A new family of direct spectral solvers for the 3D Helmholtz equation in a spherical gap and inside a sphere for non-
axisymmetric problems is presented. A variational formulation (no collocation) is adopted, based on the Fourier expansion
and the associated Legendre functions to represent the angular dependence over the sphere and using basis functions gen-
erated by Legendre or Jacobi polynomials to represent the radial structure of the solution. In the present method, bound-
ary conditions on the polar axis and at the sphere center are not required and never mentioned, by construction. The
spectral solution of the vector Dirichlet problem is also considered, by employing a transformation that uncouples the
spherical components of the Fourier modes and that is implemented here for the first time. The condition numbers of
the matrices involved in the scalar solvers are computed and the spectral convergence of all the proposed solution algo-
rithms is verified by numerical tests.
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

Several widely studied problems of computational physics can be naturally set as vector elliptic problems in
a three-dimensional spherical coordinate system. Of particular interest is the case of Helmholtz vector prob-
lems, since they arise, for instance, in the time advancement of Navier–Stokes equations by fractional step
methods. Problems of mathematical physics can be set both in an open domain extending to infinity or in
closed domains. In this work we are particularly concerned with problems in closed domains.

When considering vector fields described by the components which more naturally fit the spherical symme-
try of the domain, namely radial, azimuthal and zenithal, a coupling between equations for the different com-
ponents arises. Such coupling compromises the possibility to separate variables in the solution process. Two
strategies have been devised, in the past, to tackle this problem. The most obvious one, quite rude though, is to
convert the vector field to Cartesian components, then solve the decoupled elliptic problem and return to
spherical components. Otherwise, one can employ vector spherical harmonics, see for instance [16,17]. A third
technique was proposed by the second author [13], and applies to the equations of motion already discretised
in the longitude dimension.
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Once the problem is uncoupled and reduced to the solution of scalar Helmholtz equations, several different
combinations of spectral and finite difference methods have been proposed for it so far. For instance in [6] a
2D Fourier spectral representation is combined with finite differences in the radial direction. The first fully
spectral numerical approach employing associated Legendre functions for the longitude and latitude and
Legendre polynomials for the radial direction was proposed in [10]. Chebyshev polynomials have also been
employed, see for instance [7,11,8]. Moreover, the use of first and second kind Chebyshev polynomials for
even and odd Fourier modes, respectively, has been advocated to overcome the difficulties at the center in
[4]. By contrast, the use of only even order Chebyshev polynomials is considered in [9] to overcome the same
difficulty. A detailed discussion of the cylindrical and spherical coordinate singularities and of their treatment
in collocation spectral methods is given by Boyd [5].

In this paper a fully spectral solver for the 3D, non axisymmetric, vector Helmholtz–Dirichlet problem is
proposed. The vector Helmholtz problem is decomposed to scalar Helmholtz problems by resorting to the
technique proposed by the second author in [13]. The method is based on scalar spherical harmonics in the
two angular coordinates and features two distinct polynomial bases in the radial direction, one employing
the Legendre basis proposed by Shen [15] for the spherical gap, the other developed here originally for the
problem including the sphere centre. For completeness, we also include a scalar solver for the Helmholtz–Neu-
mann problem both for the spherical gap and for the full sphere exploiting, in the radial direction, normalised
Legendre polynomials and the new polynomial basis, respectively.

A distinct advantage of the spectral methods here proposed exploiting spherical harmonics, with respect to
Fourier methods [12,15], is that they do not suffer from the renowned pole problem. Moreover, the spectral
basis proposed for the radial direction for the problem in the full sphere also satisfies all the regularity con-
ditions in the sphere centre, so that no ‘‘centre problem’’ arises as well.

2. Scalar Helmholtz equation in spherical coordinates

Let us consider the Helmholtz equation in spherical coordinates, with unknown u = u(r,h,/):
ð�r2 þ cÞu ¼ f ðr; h;/Þ; ð2:1Þ

where c is a non-negative constant, f(r,h,/) is a known source term defined inside a spherical gap or a sphere
and $2 is the Laplace operator in spherical coordinates
r2 � 1
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: ð2:2Þ
Since the datum f(r,h,/) is real and periodic in /, it can be expanded by means of a real Fourier series, namely,
f ðr; h;/Þ ¼ f0ðr; hÞ þ 2
X1
m¼1

½fmðr; hÞ cosðm/Þ � f�mðr; hÞ sinðm/Þ�; ð2:3Þ
where the expansion coefficients fm(r,h), m = 0, ± 1, ± 2, . . . , are defined by
f�mðr; hÞ ¼
1

2p

Z 2p

0

f ðr; h;/Þ
cosðm/Þ
sinðm/Þ

d/: ð2:4Þ
The real unknown u is expanded in the same Fourier series.
Introducing these expansions in the differential Eq. (2.1), equating similar terms and simplifying, we obtain

an infinite system of uncoupled equations
� 1

r2
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r2 oum

or

� �
� 1

r2 sin h
o

oh
sin h

oum

oh

� �
þ m2

r2 sin2 h
um þ cum ¼ fmðr; hÞ; ð2:5Þ
for m = 0, ± 1, ± 2, . . . . To discretise the problem we start by truncating the series at a suitable integer
Mt > 0, so that �Mt + 1 6 m 6Mt and the Fourier expansions above are approximated by finite summa-
tions; for instance, the truncated expansion of the unknown is
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uðr; h;/Þ ¼ u0ðr; hÞ þ 2
XMt�1

m¼1

½umðr; hÞ cosðm/Þ � u�mðr; hÞ sinðm/Þ� þ uMtðr; hÞ cosðMt/Þ; ð2:6Þ
where the absence of the coefficient 2 in front of last term must be noticed.
To formulate the considered elliptic problem in variational form, the Eq. (2.5) for the Fourier coefficient is

multiplied by r2sin2h, which yields
� sin2 h
o

or
r2 oum

or

� �
� sin h

o

oh
sin h

oum

oh

� �
þ m2um þ cr2 sin2 h um ¼ r2 sin2 h f mðr; hÞ; ð2:7Þ
for m = 0, ± 1, ± 2, . . . , ± (Mt � 1),Mt.
To represent the solution um(r,h), with �Mt + 1 6 m 6Mt, let us introduce the associated Legendre func-

tions fP m
‘ ðzÞ; ‘ ¼ m;mþ 1; . . . ; for m ¼ 0; 1; 2; . . .g. These functions are solution to the ordinary differential

equation
sin h
d

dh
sin h

dP m
‘ ðcos hÞ

dh

� �
þ ½‘ð‘þ 1Þ sin2 h� m2�P m

‘ ðcos hÞ ¼ 0 ð2:8Þ
and satisfy the following orthogonality relation
Z p

0

P m
‘ ðcos hÞP m

‘0 ðcos hÞ sin h dh ¼ 2

2‘þ 1

ð‘þ mÞ!
ð‘� mÞ! d‘;‘

0 : ð2:9Þ
As well known, this set of functions, once combined with the exponential eim/, m = 0,1,2, . . ., or, equivalently,
the trigonometric functions cos(m/) and sin(m/), provides a complete basis for representing the dependence
on the angular coordinates h and / over the unit sphere.

We will employ the fully orthonormalised version of the associated Legendre functions, defined by
bP m
‘ ðzÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

2

ð‘� mÞ!
ð‘þ mÞ!

s
P m
‘ ðzÞ: ð2:10Þ
The solution um(r,h), with �Mt + 1 6 m 6Mt, is expanded in the series
umðr; hÞ ¼
XMt

‘¼jmj
um
‘ ðrÞbP jmj‘ ðcos hÞ: ð2:11Þ
Substituting the expansion (2.11) into the Eq. (2.7) and exploiting Eq. (2.8) satisfied by the associated Legen-
dre functions bP m

‘ ðcos hÞ, we obtain
XMt

‘¼jmj
� d

dr
r2 dum

‘

dr

� �
þ ½‘ð‘þ 1Þ þ cr2�um

‘

� �bP jmj‘ ðcos hÞ ¼ r2fmðr; hÞ: ð2:12Þ
By projecting this equation onto the basis of the associated Legendre functions and exploiting their orthog-
onality, we obtain the following ordinary differential modal equation
� d

dr
r2 dum

‘

dr

� �
þ ½‘ð‘þ 1Þ þ cr2�um

‘ ¼ r2gm
‘ ðrÞ; ð2:13Þ
where
gm
‘ ðrÞ ¼

Z p

0

fmðr; hÞbP jmj‘ ðcos hÞ sin h dh: ð2:14Þ
Thus, the solution of the three-dimensional elliptic equation is reduced to a set of uncoupled 1D, second-order
ordinary differential equations for the expansion coefficients um

‘ ðrÞ, for �Mt + 1 6 m 6Mt and jmj 6 ‘ 6Mt.
The integral over the angular variable h is evaluated by means of the Gauss–Legendre quadrature formula for
the transformed variable z = cos h, using Mt + 2 integration points. This gives a nearly uniform distribution of
values for h, with the polar extremes excluded.
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3. Spherical gap

The Helmholtz equation is first solved in the spherical annular domain [ri 6 r 6 ro], supplemented by either
Neumann or Dirichlet boundary condition. In both cases the modal equations are rewritten in dimensionless
form by introducing a dimensionless radial coordinate x defined by r = r(x) = E(a + x), with E ” (ro � ri)/2
and a ” (ri + ro)/(ro � ri), such that the interval [ri 6 r 6 ro] is mapped in [{�1} 6 x 6 1]. The modal equation
for the transformed unknown vm

‘ ðxÞ ¼ um
‘ ðrÞ, which will be still denoted by the same letter um

‘ as um
‘ ¼ um

‘ ðxÞ,
will be
1 In
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dx
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‘ ðrðxÞÞ: ð3:1Þ
The weak form of this modal equation for um
‘ ðxÞ, is obtained by multiplying the equation by suitable functions

v(x) and integrating over the interval [�1,1]. An integration by parts gives
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‘ ðxÞ
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� �				1
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: ð3:2Þ
3.1. Neumann problem

Let us assume that the Helmholtz equation for u is supplemented by Neumann boundary condition on the
two spherical surfaces r = ri and r = ro, namely,
ou
or jr¼ri;o

¼ bi;oðh;/Þ; ð3:3Þ
where bi,o(h,/) are the boundary data for r = ri and r = ro. If c = 0, the data of the Neumann problem, i.e., the
source term f and the boundary values bi,o should satisfy the compatibility condition

R
X f ¼ �

R
oX b, with X is

the spherical gap domain, under which the solution is defined up to an additive constant.
The counterpart of the Neumann boundary condition for the transformed unknown um

‘ ðxÞ reads
dum
‘

dx jx¼�1
¼ Ebm;i;o

‘ ; ð3:4Þ
where the coefficients bm;i;o
‘ are the transform of the boundary value functions bi,o(h,/) similar to that given by

relation (2.14). Thus, the weak equation incorporating the Neumann boundary condition is Eq. (3.2) with the
last term on the right-hand side replaced by � r2

i =E3

 �

vð�1Þbm;i
‘ þ r2

o=E3

 �

vð1Þbm;o
‘ .

The approximate solution u�m
‘ ðxÞ of the Neumann boundary value problem is expanded1 in the series
u�m
‘ ðxÞ ¼

XN

i¼0

û�m
‘;i
bLiðxÞ; ð3:5Þ
where the elements of the basis fbLiðxÞg are the normalised Legendre polynomials, namely, for i P 0,bLiðxÞ �
ffiffiffiffiffiffiffiffiffi
iþ 1

2

q
Li(x). In the following the ‘‘hat’’ will be used to distinguish any quantity defined in terms of

the normalised Legendre polynomials. The overall expansion of the unknown u(r,h,/) to the Neumann prob-
lem in a spherical gap is
the matrix equations of the solution algorithm, the Fourier index m is assumed to be always positive and the presence of the
nents with negative values of the index is taken into account by appending the label ±m to the Fourier expansion coefficients.
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uðr; h;/Þ ¼
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û0
‘;i
bLi aþ r

E

� " #bP 0
‘ðcos hÞ þ 2

XMt

‘¼m

XN

i¼0
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ûMt
Mt ;i
bLi aþ r

E

� " #bP Mt
Mt
ðcos hÞ cosðMt/Þ: ð3:6Þ
The inverted summation symbol is used to denote the summation over the third, and therefore right-most,
index m of the array of the expansion coefficients. Moreover, the presence of superposed cosine and sine func-
tions means that two distinct series are involved by the Fourier summation.

By choosing the weighting functions v(x) in the same approximation space used for the unknown u�m
‘ ðxÞ,

the weak variational formulation of the modal equation yields the following system of linear equations
1

E2
bD þ ‘ð‘þ 1Þ

E2
Î þ c bM� �

û�m
‘ ¼ ĝ�m

‘ þ hb:t:i
�m
‘ : ð3:7Þ
In the equation system above,2 Î is identity matrix of order N + 1 while matrices bD and bM , representing the
radial operators, are defined by
bDi;i0 ¼
Z 1

�1

ðaþ xÞ2 dbLiðxÞ
dx

dbLi0 ðxÞ
dx

dx;

bM i;i0 ¼
Z 1

�1

ðaþ xÞ2bLiðxÞbLi0 ðxÞ dx;

ð3:8Þ
for 0 6 (i,i
0
) 6 N. Matrix bD is full and its elements are evaluated numerically by means of Gauss–Legendre

quadrature using N + 1 integration points. On the contrary, matrix bM is penta-diagonal and its elements
can be determined in closed form
bM ¼
ĉ0 b̂0 â0

b̂0 ĉ1 b̂1 â1

â0 b̂1
. .

. . .
. . .

.

â1
. .

. . .
. . .

.
âN�2

. .
. . .

. . .
.

b̂N�1

âN�2 b̂N�1 ĉN

0BBBBBBBBBB@

1CCCCCCCCCCA
ð3:9Þ
where
âi ¼
ðiþ 1Þðiþ 2Þ

ð2iþ 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2iþ 1Þð2iþ 5Þ

p ; i P 0;

b̂i ¼ 2a
iþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2iþ 1Þð2iþ 3Þ
p ; P 0;

ĉi ¼ a2 þ 2i2 þ 2i� 1

ð2i� 1Þð2iþ 3Þ ; i P 0:

ð3:10Þ
For the proof, see [3].
As far as the right-hand side is concerned, the components of source vector and of the boundary term are
ĝ�m
‘;i ¼

Z 1

�1

bLiðxÞðaþ xÞ2g�m
‘ ðrðxÞÞ dx; ð3:11Þ

hb:t:i�m
‘;i ¼ �

r2
i

E3
bLið�1Þ b�m;i

‘ þ r2
o

E3
bLið1Þ b�m;o

‘ ; ð3:12Þ
for 0 6 i 6 N and m 6 ‘ 6Mt.
roughout the paper matrices and arrays will be denoted by capital letters while vectors will denoted by lower case letters.
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The solution of the system can be calculated by factorisation and forward-backward substitutions for the
symmetric matrix
Table
Condit
values

N

c = 0
c = 10
c = 10

Table
Neuma

N = M

10
15
20
25
30
35

Exact
bAc �
1

E2
bD þ c bM : ð3:13Þ
Alternatively, we can also diagonalise this matrix, by considering the symmetric eigenvalue problembAcŵc ¼ k̂cŵc by employing, for instance, LAPACK Library [1]. The advantage of using the basis (3.5) is to
give one and the same matrix bAc for all values of ‘ in the solution of Neumann problems in the spherical gap.

It is interesting to evaluate how the condition number of the system matrix in (3.7) depends on the basis
degree. In Table 1 we report the condition numbers for several basis degrees for ‘ = 0, with E ¼ 1

2
, and for

three different values of c, c = 0, 103, 106, as an example. Results show that, for low values of the c parameter,
the condition number behaviour is dominated by the stiffness matrix and grows as N4, which is typical for
spectral methods.

Convergence tests have been performed against analytical solutions evaluating the error in the L1(X) norm
as well as in the weighted L2

wðXÞ norm, with weight w(r,h) = r2sin2h, L2
werror ¼ kucomputed � uexactkL2

w
, where
kuk2
L2

w
¼
Z ro

ri

Z p

0

Z 2p

0

½uðr; h;/Þ�2r2 dr sin2 hdhd/: ð3:14Þ
All test problems are defined by exact solutions u = u(x,y,z) which are expressed in terms of Cartesian coor-
dinates to yield infinitely differentiable functions also on the z axis.

The exact solution for the Neumann problem with c = 1.5 in a spherical gap 0.5 6 r 6 1.5 is defined by
u ¼ epðx�x0Þ2þqðy�y0Þ2þz�z0 , with p = 0.5, q = 1.2 and x0 = 0.1, y0 = 0.2, z0 = 0.3. The results reported in Table
2 show that the expected spectral convergence is attained.

The second test for the Neumann solver is the Poisson problem with exact solution u = sinx siny sinz in the
spherical gap 0.5 6 r 6 1. Table 3 gives the L1 error of the approximate solutions provided by the proposed
spectral algorithm and by hybrid methods of Lai et al., as well the Fishpack library [6], which both use spher-
ical harmonics in the angular directions and second-order finite differences in the radial direction. The results
show the second-order accuracy of the hybrid spectral/finite difference methods, to be compared with the spec-
tral convergence of the proposed method.

3.2. Dirichlet problem

Let us now consider the case of Dirichlet boundary condition, which for the transformed unknowns um
‘ ðxÞ

read um
‘ ð�1Þ ¼ am;i;o

‘ , where m runs on positive and negative integers.
1
ion number of matrix in (3.7) with ‘ = 0 and E ¼ 1

2
of the Neumann problem in a spherical gap for different basis degrees and c

16 32 64 128

9.0 · 103 1.3 · 105 1.9 · 106 3.0 · 107

3 1.6 · 102 2.2 · 103 3.2 · 104 5.0 · 105

6 8.1 1.2 · 10 6.8 · 10 9.4 · 102

2
nn problem for Helmholtz operator with c = 1 in the spherical gap 0.5 6 r 6 1.5

t L1 error L2
w error

7.4 · 10�3 4.2 · 10�3

1.9 · 10�5 1.1 · 10�5

2.2 · 10�8 1.4 · 10�8

2.5 · 10�11 1.3 · 10�11

9.9 · 10�12 7.4 · 10�12

9.9 · 10�12 7.9 · 10�12

solution u ¼ epðx�x0Þ2þqðy�y0Þ2þz�z0 with p ¼ 1
2, q = 1.2 and r0 = (0.1,0.2,0.3).



Table 3
L1 error for Poisson–Neumann problem in the spherical gap 0.5 6 r 6 1

N = Mt Present, spectral Spectral/FD [6] Fishpack

9 3.0 · 10�7 3.7 · 10�3 5.9 · 10�3

16 4.3 · 10�13 1.0 · 10�3 1.2 · 10�3

32 1.6 · 10�14 2.5 · 10�4 3.1 · 10�4

64 8.4 · 10�14 6.4 · 10�5 7.8 · 10�5

Exact solution u = sin x sin y sin z.
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The approximate solution u�m
‘ ðxÞ of the Dirichlet problem is expanded in the series
u�m
‘ ðxÞ ¼

XN

i¼0

u�m
‘;i L�i ðxÞ; ð3:15Þ
where the elements of the basis fL�i ðxÞg are defined as
L�0ðxÞ ¼ 1; L�1ðxÞ ¼
xffiffiffi
2
p ; L�i ðxÞ ¼

Li�2ðxÞ � LiðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2i� 1Þ

p ; i P 2; ð3:16Þ
where {Li(x),i = 0,1,2, . . . } indicate Legendre polynomials. This basis is slightly more complicate than the one
for the Neumann problem in that it contains linear combinations of two Legendre polynomials which vanish
on the boundary to fulfill homogeneous Dirichlet conditions, as introduced by Shen [15]. The first two func-
tions of the basis are here included to impose nonhomogeneous boundary values by means of a lifting.

The expansion coefficients of the solution u�m
‘ ðxÞ are now taken as a vector unknown,

u�m
‘ ¼ fu�m

‘;i ; 0 6 i 6 Ng [where the absence of the variable specification (x) in the vector quantity must be
noticed] and similarly the expansion coefficients of the source term g�m

‘ ðxÞ define the known vector
g�m
‘ ¼ fg�m

‘;i ; 0 6 i 6 Ng. Then, the linear system of equations can be written compactly in matrix form
1

E2
Dþ ‘ð‘þ 1Þ

E2
M0 þ cM

� �
u�m
‘ ¼ g�m

‘ þ hb:t:i
�m
‘ ; ð3:17Þ
where the boundary term hb:t:i�m
‘ will be made to disappear by enforcing the Dirichlet condition by means of a

lifting of the nonhomogeneous boundary data, to be described below. The matrices D,M and M0 correspond-
ing to the operators acting on the radial coordinate are
Di;i0 ¼
Z 1

�1

ðaþ xÞ2 dL�i ðxÞ
dx

dL�i0 ðxÞ
dx

dx;

Mi;i0 ¼
Z 1

�1

ðaþ xÞ2L�i ðxÞL�i0 ðxÞ dx;

M0
i;i0 ¼

Z 1

�1

L�i ðxÞL�i0 ðxÞ dx;

ð3:18Þ
with (i,i
0
) P 0. The matrices D,M and M0 are banded symmetric and their nonzero elements can be evaluated

exactly in closed form. The matrix D is penta-diagonal, according to the following profile
D ¼

0 0 0

0 c1 b1 a1

0 b1 c2 b2 a2

a1 b2
. .

. . .
. . .

.

a2
. .

. . .
. . .

.
aN�2

. .
. . .

. . .
.

bN�1

aN�2 bN�1 cN

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
ð3:19Þ
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and its elements are defined by
a1 ¼
�2

3
ffiffiffi
5
p ; ai ¼

iðiþ 1Þ
ð2iþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2iþ 3Þð2i� 1Þ

p ; i P 2;

b1 ¼ �
2affiffiffi

3
p ; bi ¼ 2a

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4i2 � 1
p ; i P 2;

c1 ¼ a2 þ 1

3
; ci ¼ a2 þ 2i2 � 2i� 1

ð2i� 3Þð2iþ 1Þ ; i P 2:

ð3:20Þ
Matrix M has nine diagonals of nonzero elements, with the following pattern
M ¼

�e0
�d0 �c0

�b0 �a0

�d0 �e1
�d1 �c1

�b1 �a1

�c0
�d1

. .
. . .

. . .
. . .

. . .
.

�b0 �c1
. .

. . .
. . .

. . .
. . .

.
�aN�4

�a0
�b1

. .
. . .

. . .
. . .

. . .
.

�bN�3

�a1
. .

. . .
. . .

. . .
. . .

.
�cN�2

. .
. . .

. . .
. . .

. . .
.

�dN�1

�aN�4
�bN�3 �cN�2

�dN�1 �eN

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

ð3:21Þ
where, as shown in [3],
�d0 ¼ 2a

ffiffiffi
2
p

3
; �d1 ¼ 2a

1

5
ffiffiffi
3
p ; �di ¼ 2a

i

ð4i2 � 9Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4i2 � 1
p ; i P 2;

�b0 ¼ 2a
1

3

ffiffiffi
2

5

r
; �b1 ¼ 2a

2

15
ffiffiffi
7
p ; �bi ¼ 2a

�ðiþ 1Þ
ð2iþ 1Þð2iþ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2i� 1Þð2iþ 5Þ

p ; i P 2;

ð3:22Þ
and
�e0 ¼ 2a2 þ 2
3
; �e1 ¼ a2

3
þ 1

5
;

�c0 ¼
ffiffi
2
3

q
a2 þ 1

5

ffiffi
2
3

q
; �c1 ¼ a2

3
ffiffi
5
p þ 1

7
ffiffi
5
p ;

�a0 ¼ 2
3�5

ffiffi
2
7

q
; �a1 ¼ 2

3�5�7 ;

ð3:23Þ
while, for i P 2,
�ei ¼
2

ð2i� 3Þð2iþ 1Þ
i2 � i� 3

ð2i� 5Þð2iþ 3Þ þ a2

� �
;

�ci ¼
1

ð2iþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2i� 1Þð2iþ 3Þ

p 3

ð2i� 3Þð2iþ 5Þ � a2

� �
;

�ai ¼ �
ðiþ 1Þðiþ 2Þ

ð2iþ 1Þð2iþ 3Þð2iþ 5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2i� 1Þð2iþ 7Þ

p :

ð3:24Þ
Matrix M0 is obtained from the contribution to the M matrix which is proportional to a2, see also [14].
Finally, we have
g�m
‘;i ¼

Z 1

�1

L�i ðxÞðaþ xÞ2g�m
‘ ðrðxÞÞ dx; ð3:25Þ
for 0 6 i 6 N and m 6 ‘ 6Mt. The integrals are evaluated numerically by Gauss–Legendre formula with
N + 2 integration points.
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3.2.1. Lifting of the nonhomogeneous boundary condition

The nonhomogeneous Dirichlet boundary condition is imposed by means of a lifting.This is achieved by
decomposing the solution in two parts, as follows,
3 In
the no
u�m
‘ ðxÞ ¼ u�m

‘;a ðxÞ þ u�m
‘;homðxÞ; ð3:26Þ
where
u�m
‘;a ðxÞ ¼

1

2
a�m;i
‘ þ a�m;o

‘


 �
þ 1

2
a�m;o
‘ � a�m;i

‘


 �
x ð3:27Þ
while the part of the solution satisfying homogeneous conditions is given by the reduced summation:
u�m
‘;homðxÞ ¼

XN

i¼2

u�m
‘;i L�i ðxÞ: ð3:28Þ
Then, one defines the matrix
Að‘Þ ¼
1

E2
Dþ ‘ð‘þ 1Þ

E2
M0 þ cM ð3:29Þ
and introduces its partitioning to separate the ‘‘internal’’ component3 A(‘), with elements ai;i0 such that
2 6 (i,i

0
) 6 N, from the two-column array
As
ð‘Þ ¼ fai;i0 ; i ¼ 2; 3; . . . ;N ; i0 ¼ 0; 1g: ð3:30Þ
The same partitioning is applied to the unknown vector fu�m
‘;i ; i ¼ 0; 1; . . . ;Ng to isolate the degrees of freedom

associated with the boundary values
u�m;s
‘;a ¼

1

2
a�m;i
‘ þ a�m;o

‘


 �
;

1ffiffiffi
2
p a�m;o

‘ � a�m;i
‘


 �� �
: ð3:31Þ
from vector u�m
‘ ¼ fu�m

‘;i ; i ¼ 2; 3; . . . ;Ng of the ‘‘internal’’ degrees of freedom. According to this partitioning
the lifted linear system will be
Að‘Þu
�m
‘ ¼ g�m

‘ � As
ð‘Þu

�m;s
‘;a ; ð3:32Þ
where Að‘Þ � 1
E2 Dþ ‘ð‘þ1Þ

E2 M0 þ cM. We solve this linear system by Cholesky factorisation and substitutions for
a band symmetric matrix with nine diagonals.

In Table 4 we report the condition numbers of matrix A(‘) for ‘ = 0 of the Dirichlet solver for several basis
degrees and E ¼ 1

2
, for three different values of c, c = 1, 103, 106. Results show the very good conditioning of

Shen’s basis. This basis is better conditioned than the one employed for the Neumann problem. Its use is less
efficient, especially when a single equation has to be solved, but could become mandatory when very high res-
olutions are needed.

The Dirichlet spectral solver has been tested against the same test exact solution considered for the Neu-
mann problem, with c = 2 and in the same spherical gap 0.5 6 r 6 1.5. Table 5 shows the spectral conver-
gence of the method. The greater accuracy of the Dirichlet solver with respect to the Neumann solver in both
norms, cf. Table 2, is related to a better conditioning of the matrices for the Dirichlet boundary value
problem.

Also the Dirichlet spectral solver is compared with hybrid spectral/difference methods of [6] and the Fish-
pack algorithm, on the Poisson problem with exact solution u = sinxsinysinz in the spherical gap 0.5 6 r 6 1.
Table 6 gives the L1 errors of the three methods, which confirm the spectral convergence of the fully spectral
solvers versus second-order accuracy of hybrid spectral/finite difference methods.
the following, sanserif characters will be used to denote matrices and vectors pertaining to the reduced problem after the lifting for
nhomogeneous boundary conditions.



Table 4
Condition number of matrix in (3.32) with ‘ = 0 and E ¼ 1

2
of the Dirichlet problem in a spherical gap for different basis degrees and c

values

N 16 32 64 128

c = 1 8.6 8.9 9.0 9.0
c = 103 3.6 · 102 4.2 · 102 4.4 · 102 4.4 · 102

c = 106 3.0 · 103 4.3 · 104 2.7 · 105 4.2 · 105

Table 5
Dirichlet problem for Helmholtz operator with c = 2 in the spherical gap 0.5 6 r 6 1.5

N = Mt L1 error L2
w error

20 2.2 · 10�8 1.4 · 10�8

30 1.8 · 10�13 7.6 · 10�14

40 2.2 · 10�12 4.2 · 10�13

Exact solution u ¼ epðx�x0Þ2þqðy�y0Þ
2þz�z0 with p ¼ 1

2, q = 1.2 and r0 = (0.1, 0.2, 0.3).

Table 6
L1 error for Poisson–Dirichlet problem in the spherical gap 0.5 6 r 6 1

N = Mt Present, spectral Spectral/FD [6] Fishpack

8 9.3 · 10�7 1.3 · 10�3 1.8 · 10�3

16 5.2 · 10�16 3.9 · 10�4 4.6 · 10�4

32 6.5 · 10�16 1.0 · 10�4 1.1 · 10�4

64 1.2 · 10�15 2.5 · 10�5 2.9 · 10�5

Exact solution u = sin x sin y sin z.
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4. Sphere

The Helmholtz equations is now solved within the sphere of radius r = c, so that the domain contains the
polar axis as well as the center of the sphere.

Let us introduce the dimensionless radial variable q = r/c, ranging in the unit interval 0 < q 6 1. The ordin-
ary differential equation for the unknown um

‘ ðqÞ will become
� d

dq
q2 dum

‘

dq

� �
þ ½‘ð‘þ 1Þ þ cq2�um

‘ ¼ q2gm
‘ ðqÞ: ð4:1Þ
for m = 0, ± 1, ± 2, . . . , ± (Mt � 1),Mt, and ‘ = jmj, jmj + 1, . . . ,Mt. Here the original constant c of the
Helmholtz equation has been redefined by a multiplication by c2. The weak form of this modal equation
for um

‘ ¼ um
‘ ðqÞ is obtained by multiplying the equation by suitable functions v(q) and integrating over the

interval [0,1]. An integration by parts gives
Z 1

0

q2 dv
dq

dum
‘

dq
þ ½‘ð‘þ 1Þ þ cq2�vum

‘

� �
dq ¼

Z 1

0

q2vðqÞ gm
‘ ðqÞ dqþ vð1Þ dum

‘ ð1Þ
dq

: ð4:2Þ
It can be noted that the left contribution of the boundary term disappears since q = 0 at the sphere center.
The condition of infinite differentiability of u up to the sphere centre implies the following conditions on the

modal expansion coefficients: u�m
‘ ðqÞ 	 q‘Uðq2Þ as q! 0. This constraint allows one to expand the solution

u�m
‘ ðqÞ in the following series
u�m
‘ ðqÞ ¼

XMt

i¼‘
u�m
‘;i q‘P

H‘þ1
2

i�‘ ð2q2 � 1Þ: ð4:3Þ
The basis functions P
H‘þ1

2
i�‘ ðsÞ are defined in terms of Jacobi polynomials P ða;bÞk ðsÞ, �1 6 s 6 1, by relations:
P
H‘þ1

2
0 ðsÞ ¼ 1 and P

H‘þ1
2

k ðsÞ ¼ 1� s
2

P
ð1;‘þ1

2Þ
k�1 ðsÞ; k ¼ 1; 2; . . . : ð4:4Þ



Mt

0

m

i

0 l

0

Mt

Mt

Fig. 1. Schematic of the data structure of the expansion coefficients (cosine part) in 3D elliptic problem in a sphere for Mt = 6.
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In Fig. 1 a picture of the set of spectral coefficients used to represent a function in a sphere is given for Mt = 6:
only the coefficients with m P 0 are considered. In general, the total number of cosine and sine expansion coef-
ficients is equal to 1

6
ðMt þ 1Þð2M2

t þ 7Mt þ 6Þ. This value represents the minimum number of degrees of free-
dom necessary to assure spectral accuracy in the solution of Helmholtz equation in a sphere.

The complete spectral expansion considered here for the unknown u(q,h,/) of the elliptic boundary value
problem in the spherical domain is therefore given by
uðq; h;/Þ ¼
XMt

‘¼0

XMt

i¼‘
u0
‘;iq

‘P
H‘þ1

2
i�‘ ð2q2 � 1Þ

" #bP 0
‘ðcos hÞ

þ 2
XMt

‘¼m

XMt

i¼‘
u�m
‘;i q‘P

H‘þ1
2

i�‘ ð2q2 � 1Þ
" #bP jmj‘ ðcos hÞ

( )
cosðm/Þ
� sinðm/Þ

Mt�1

m¼1

þ uMt
Mt ;Mt

qMt bP Mt
Mt
ðcos hÞ cosðMt/Þ;

ð4:5Þ
where the equality of the upper extremes of the three summations, as well as the nested dependence of the
lower extremes in the double and triple summations can be noticed.

The approximate version of the weak problem for u�m
‘ ðqÞ assumes the following matrix form
½D þ cM �u�m ¼ g�m þ hb:t:i�m
; ð4:6Þ
where the special index notation is used to emphasise that the order of the (square) matrices and of the vec-
tors depends on the summation index ‘. More precisely, the order corresponding to is Mt � ‘ + 1, and there-
fore runs from the maximum order Mt + 1 for ‘ = 0, to the minimum order 1 for ‘ = Mt.

The matrices D and M corresponding to the operators on the radial coordinate are
D i;i0 ¼
Z 1

�1

4
1þ s

2

� �3
2 d

ds
1þ s

2

� �‘
2

P
H‘þ1

2
i�‘ ðsÞ

" #
d

ds
1þ s

2

� �‘
2

P
H‘þ1

2

i0�‘ ðsÞ
" #

þ ‘ð‘þ 1Þ
4

(


 1þ s
2

� �‘�1
2

P
H‘þ1

2
i�‘ ðsÞP

H‘þ1
2

i0�‘ ðsÞ
)

ds;

M i;i0 ¼
1

4

Z 1

�1

1þ s
2

� �‘þ1
2

P
H‘þ1

2
i�‘ ðsÞP

H‘þ1
2

i0�‘ ðsÞ ds;

ð4:7Þ



Table 7
Convergence properties of the mass matrix problem for the basis (4.4) on the oscillatory solution u = sin[20(x � x0)2 + 4(y � y0)2 + z � z0]
with r0 = (0.1, 0.2, 0.3)

Mt L1 error L2
w error

32 1.56 4.87
64 1.54 4.05
96 0.93 1.25

128 0.93 · 10�3 0.59 · 10�3

192 2.10 · 10�11 3.83 · 10�12

224 4.18 · 10�11 5.91 · 10�12

256 1.00 · 10�10 1.22 · 10�11
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for ‘ 6 (i,i
0
) 6Mt. Matrix D is diagonal and matrix M is tridiagonal. Their nonzero elements are obtained

by numerical evaluation of the integrals by means of Gauss–Jacobi formula with Mt + 1 integration points,
namely,
Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffi
1þ s
p

f ðsÞ ds ¼
XMtþ1

j¼1

f ðsjÞ xj; ð4:8Þ
where sj and xj are the quadrature points and weights associated with the Jacobi polynomial P
ð0;12Þ
k ðsÞ.

As far as the right-hand side is concerned, the components of the source vector and of the boundary term
are
g�m
i ¼

1

4

Z 1

�1

1þ s
2

� �‘þ1
2

P
H‘þ1

2
i�‘ ðsÞ g�m

‘

1þ s
2

� �1=2
 !

ds; ð4:9Þ

hb:t:i�m
i ¼ P

H‘þ1
2

i�‘ ð1Þ b�m
‘ ; ð4:10Þ
for m 6 ‘ 6Mt and ‘ 6 i 6Mt. The integrals above are evaluated by the same Gauss–Jacobi formula.
The basis (4.4) does not suffer from the bad conditioning typically encountered by other bases used to

approximate functions that behave analytically at the center in spherical coordinates or on the axis in cylin-
drical ones.The conditioning of the new basis is assessed by solving the mass matrix problem with a strongly
oscillatory solution u = sin[h(x � x0)2 + k(y � y0)2 + z � z0] for h = 20, k = 40 and r0 = (0.1,0.2,0.3). The
numerical errors are reported in Table 7. They show the high number of polynomials required to resolve
the oscillations and, once the resolution is adequate, the spectral accuracy which, also by virtue of the tridi-
agonal mass matrix, is not jeopardised by the confinement near q = 1 of the nonvanishing region of the poly-
nomials for large ‘. In short, the proposed basis turns out to be well conditioned.

4.1. Neumann problem

Let us first consider the case of a Neumann boundary condition on the surface of the sphere:
ouð1;h;/Þ

oq ¼ bðh;/Þ, where b(h,/) is the boundary value of u on the surface q = 1. If c = 0, the data of the Neu-
mann problem, i.e., the source term f and the boundary values b should satisfy the following compatibility
condition

R
X f ¼ �

R
oX b, X being the spherical domain, under which the solution is defined up to an additive

constant.
After the transformation to the associated Legendre functions, each expansion coefficient um

‘ ðqÞ, with
m = 0, ± 1, ± 2, . . . , ± (Mt � 1),Mt, and ‘ = jmj, jmj + 1, . . . ,Mt, will be supplemented by the derivative con-
dition:

dum
‘
ð1Þ

dq ¼ bm
‘ . Incorporating the derivative boundary value, the weak modal equation for the Neumann

problem will be Eq. (4.2) with the replacement of the last term on the right-hand side by vð1Þbm
‘ .

Thus, the Neumann problem within a sphere leads to the linear system (4.6) for the unknown u�m, with the
tridiagonal matrix
A ¼ D þ cM : ð4:11Þ



Table 8
Condition number for matrix in (4.11) with ‘ = 0 of the Neumann problem in a sphere for different basis degrees and c values

N 16 32 64 128

c = 0 1.9 · 10 3.9 · 10 7.9 · 10 1.5 · 102

c = 103 1.6 · 102 1.6 · 102 1.6 · 102 1.6 · 102

c = 106 8.8 · 103 2.5 · 104 2.5 · 104 2.7 · 104

Table 9
Neumann problem for Helmholtz operator with c = 2 in the sphere q 6 1

Mt L1 error relative L2
w error

10 2.8 · 10 1.0 · 10�2

20 8.3 · 10�3 2.1 · 10�6

30 2.3 · 10�7 4.7 · 10�11

40 1.3 · 10�10 8.1 · 10�14

Exact solution u ¼ epðx�x0Þ2þqðy�y0Þ
2þz�z0 with p = 3, q = 6 and r0 = (0.1, 0.2, 0.3).
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The solution of the system is obtained by LDLT factorisation and substitutions tailored to tridiagonal
matrices.

Also for the spherical domain it is worthwhile to evaluate the condition number of the system matrix A as
a function of basis degree and c, see Table 8. For the Neumann boundary value problem one has to consider
also the minimum value of c = 0, which is encountered in the solution of a Poisson equation (occurring, for
instance, when the Navier–Stokes equations are solved by means of a projection method). In this case the con-
dition number increases quite slowly with the polynomial degree, leading to well conditioned system matrices.

The L1 and L2
w errors for the solution of the Neumann problem with c = 2, p = 3 and q = 6 in the unit

sphere q 6 1 are reported in Table 9. They demonstrate that spectral convergence is achieved with an accuracy
very similar to that reached in the spherical gap, cf. with results in Table 2.

4.2. Dirichlet problem

Let us now assume a Dirichlet condition ujq=1 = a(h,/), where function a(h,/) represents the boundary
value specified on the spherical surface q = 1. After introducing the expansion of the boundary data in trig-
onometric and associated Legendre functions, we obtained the modal condition
um
‘ ð1Þ ¼ am

‘ ; ð4:12Þ

for ‘ = jmj, jmj + 1, . . . ,Mt with m = 0, ± 1, ± 2, . . .

Considering now the modal unknown u�m
‘ ðqÞ, the approximate solution is expanded as in (4.3) and the

weak equation for the radial Dirichlet problem of each modal unknown reads as system (4.6). However, in
the Dirichlet case the boundary term hb:t:i�m will be made to disappear by enforcing the nonzero boundary
values by means of a lifting of each modal datum, to be described below.

4.2.1. Lifting of the nonhomogeneous boundary value

The nonzero Dirichlet boundary condition is imposed by means of lifting, which consists in decomposing
the solution in two parts, as follows,
u�m
‘ ðqÞ ¼ a�m

‘ þ u�m
‘;homðqÞ; ð4:13Þ
where the part of the solution satisfying the homogeneous condition is expressed by the reduced summation
u�m
‘;homðqÞ ¼

XMt

i¼‘þ1

u�m
‘;i q‘P

H‘þ1
2

i�‘ ð2q2 � 1Þ; ð4:14Þ
where the absence of the first term with i = ‘ must be noticed.Then, one consider matrix A = D + cM and
introduces its partitioning to separate the ‘‘internal’’ component A , with elements ai;i0 such that
‘ + 1 6 (i,i

0
) 6Mt, from its first column



Table 10
Condition number for matrix in (4.16) with ‘ = 0 of the Dirichlet problem in a sphere for different basis degrees and c values

N 16 32 64 128

c = 1 1.6 · 10 3.2 · 10 6.6 · 10 1.3 · 102

c = 103 2.5 · 10 2.5 · 10 2.5 · 10 2.5 · 10
c = 106 3.1 · 102 1.8 · 103 4.1 · 103 4.1 · 103

Table 11
Dirichlet problem for Helmholtz operator with c = 2 in the sphere q 6 1

Mt L1 error Relative L2
w error

10 2.7 · 10 1.0 · 10�2

20 8.3 · 10�3 2.1 · 10�6

30 2.3 · 10�7 4.7 · 10�11

40 2.0 · 10�11 3.0 · 10�15

50 2.5 · 10�11 8.4 · 10�15

Exact solution u ¼ epðx�x0Þ2þqðy�y0Þ2þz�z0 with p = 3, q = 6 and r0 = (0.1, 0.2, 0.3).
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As ¼ fai;‘; i ¼ ‘þ 1; ‘þ 2; . . . ;Mtg; ð4:15Þ
with the first diagonal element eliminated. The same partitioning is applied to the unknown vector
u�m ¼ fu�m; i ¼ ‘; ‘þ 1; . . . ;Mtg to isolate the ‘‘internal’’ degrees of freedom u�m ¼ fu�m

i; i ¼ ‘þ 1;
‘þ 2; . . . ;Mtg from that associated with the boundary value a�m

‘ which defines the single component
column vector a�m ¼ fa�m

‘ g. According to this partitioning the lifted linear system will be
A u�m ¼ g�m � As a�m; ð4:16Þ
where A ” D + cM . There is a subtlety in the use of the index notation for the matrix A of the lifted
problem. The order of this matrix is Mt � ‘, i.e., one unit less than the order of its parent matrix A , since
the first component has been eliminated in the lifting. This implies that in the last problems for ‘ = Mt matrix
A will not exist and the solution of the problem for these modes will consist only in taking into account the
boundary values a�m

Mt
. The linear system of the lifted equations is solved by LDLT factorisation algorithm, as in

the Neumann case.
The condition numbers of the spectral matrices A , for ‘ = 0, for the radial discretisation of the elliptic

problem with Dirichlet condition are also provided, for several basis degrees and c values, see Table 10. As
expected, its behaviour is very similar to that observed for the Neumann case reported in Table 8.

The results of the Helmholtz solver with c = 1 for the Dirichlet problem in the unit sphere q 6 1 are shown
in Table 11 and demonstrate the spectral accuracy of the proposed method.

5. Vector elliptic equation in spherical components

5.1. Dirichlet problem for a vector field

We are now ready for the most interesting case, i.e., the three-dimensional vector Poisson equation
�$2u = f(r,h,/) or Helmholtz equation (�$2 + c)u = f(r,h,/) in spherical coordinates (r,h,/), supplemented
by the Dirichlet condition ujr¼ri;o

¼ ai;oðh;/Þ.
When the Laplacian acts on a vector field u expressed in terms of its spherical coordinates ur, uh and u/, the

following matrix differential operator has to be considered
$2 ¼
O

2 � 2
r2 � 2

r2 sin h
o
oh ðsinh . . .Þ � 2

r2 sin h
o
o/

2
r2

o
oh O

2 � 1
r2 sin2 h

� 2 cos h
r2 sin2 h

o
o/

2
r2 sin h

o
o/

2 cos h
r2 sin2 h

o
o/ O

2 � 1
r2 sin2 h

0BB@
1CCA; ð5:1Þ
where the scalar spherical Laplace operator is defined in (2.2).
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Being interested in purely real vector fields, let us now represent the dependence on the cyclic coordinate /
by means of the real Fourier series
uðr; h;/Þ ¼ u0ðr; hÞ þ 2
X1
m¼1

½umðr; hÞ cosðm/Þ � u�mðr; hÞ sinðm/Þ�; ð5:2Þ
where umðr; hÞ ¼ ur
mðr; hÞr̂þ uh

mðr; hÞĥþ u/
mðr; hÞ/̂;�1 < m <1 with r̂, ĥ and /̂ denoting the unit vectors of

the spherical coordinate system.
By virtue of the adopted Fourier expansion, the operator representing the Laplace operator $2 in the space

of the Fourier coefficients of a scalar function is
o2
m ¼

1

r2

o

or
r2 o

or

� �
þ 1

r2 sin h
o

oh
sin h

o

oh

� �
� m2

r2 sin2 h
; ð5:3Þ
whereas the operator representing the Laplace matrix operator $2 in the space of the Fourier coefficients of a
vector field is
›2
m ¼

o2
m � 2

r2 � 2
r2 sin h

o
oh ðsinh . . .Þ 2m

r2 sin h
2
r2

o
oh o2

m � 1
r2 sin2 h

2m cos h
r2 sin2 h

2m
r2 sin h

2m cos h
r2 sin2 h

o2
m � 1

r2 sin2 h

0B@
1CA: ð5:4Þ
The equation system for the coefficients of the m-th Fourier mode reads
�›2
m

ur
m

uh
m

u/
�m

0B@
1CA ¼ f r

mðr; hÞ
f h

mðr; hÞ
f /
�mðr; hÞ

0B@
1CA ð5:5Þ
Thus, for m 6¼ 0 the three spherical components of the vector Fourier mode are coupled together, while for the
first mode m = 0 only the two components ur

0 and uh
0 are coupled together.

5.2. Uncoupling the spherical vector components

We now describe a method originally proposed in [13] for uncoupling the three equations for the Fourier
spherical components of the vector unknown by means of a suitable similarity transformation. The similarity
transformation is constructed in two steps: first, the coupling between the r and h components due to the off-
diagonal terms containing the first-order derivative o

oh is eliminated; then, the remaining coupling between the
first new variable and the third unchanged variable (the / component) is eliminated by means of the same
similarity transformation considered in the analysis of the cylindrical coordinates.

Let us consider the first change of variables defined by the linear transformation
H0 ¼
sin h cos h 0

cos h � sin h 0

0 0 1

0B@
1CA; u1

m

u2
m

u/
�m

0B@
1CA ¼ H0

ur
m

uh
m

u/
�m

0B@
1CA: ð5:6Þ
Matrix H0 is such that H0 ¼ HT
0 ¼ H�1

0 . Furthermore, by standard calculations, it is possible to show that the
similarity transformation provided by matrix H0 gives the following partial diagonalisation of the matrix oper-
ator ›2

m:
H0›2
mH0 ¼

o2
m � 1

r2 sin2 h
0 2m

r2 sin2 h

0 o2
m 0

2m
r2 sin2 h

0 o2
m � 1

r2 sin2 h

0B@
1CA: ð5:7Þ
It is important to note that this demonstration is relatively elaborated because of the presence of the function
sinh inside and outside the derivative o

oh in the operator o2
m as well as in its matrix counterpart ›2

m.
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Very easy is the elimination of the coupling still remaining between the first (new) and the third (old) com-
ponents of the vector mode. Thus, introducing a second linear transformation defined by the matrix
Q ¼ 1ffiffiffi
2
p

1 0 1

0
ffiffiffi
2
p

0

1 0 �1

0B@
1CA; u1

m�1

u2
m

u3
mþ1

0B@
1CA ¼ Q

u1
m

u2
m

u/
�m

0B@
1CA; ð5:8Þ
with, as before, Q = QT = Q�1, one obtains immediately QH0›2
mH0Q ¼ diagðo2

m�1; o
2
m; o

2
mþ1Þ. Therefore, defin-

ing the complete transformation
H � QH0; ð5:9Þ

it is immediate to obtain
H ¼ 1ffiffiffi
2
p

sin h cos h 1ffiffiffi
2
p

cos h �
ffiffiffi
2
p

sin h 0

sin h cos h �1

0B@
1CA; u1

m�1

u2
m

u3
mþ1

0B@
1CA ¼ H

ur
m

uh
m

u/
�m

0B@
1CA: ð5:10Þ
The transformation H is orthogonal. In fact H ¼ Q H0 ¼ QT HT
0 ¼ ½H0Q�T , since the matrices H0 and Q are

symmetric. But H�1
0 ¼ H0 and Q�1 = Q, so that H0Q ¼ H�1

0 Q�1 ¼ ½QH0��1 ¼ H�1. It follows that HT = H�1.
Notice however that H 6¼ HT since Q and H0 in general do not commute (except when h = p/2). So the pre-
vious complete diagonalisation of the matrix operator ›2

m can be written as
H›2
mHT ¼

o2
m�1 0 0

0 o
2
m 0

0 0 o2
mþ1

0B@
1CA: ð5:11Þ
The solution of the equations for the m-th Fourier mode with m 6¼ 0 proceeds as follows: first, the transfor-
mation H is applied to the Fourier coefficient fm of the source term f of the Poisson equation, then solve the
three uncoupled elliptic 2D equations and finally perform the inverse transformation to the spherical compo-
nents, as summarised as follows
f 1
m�1

f 2
m

f 3
mþ1

0B@
1CA ¼ H

f r
m

f h
m

f /
�m

0B@
1CA �o2

m�1u1
m�1 ¼ f 1

m�1ðr; hÞ;
�o

2
mu2

m ¼ f 2
mðr; hÞ;

�o2
mþ1u3

mþ1 ¼ f 3
mþ1ðr; hÞ;

ur
m

uh
m

u/
�m

0B@
1CA ¼ HT

u1
m�1

u2
m

u3
mþ1

0B@
1CA: ð5:12Þ
The problem for the first Fourier mode m = 0 is simpler, since the corresponding matrix operator in the Fou-
rier space is
›2
0 ¼

o2
0 � 2

r2 � 2
r2 sin h

o
oh ðsinh . . .Þ 0

2
r2

o
oh o2

1 0

0 0 o2
1

0B@
1CA: ð5:13Þ
Thus, the similarity transformation performing the diagonalisation is easily found to be
H0›2
0H0 ¼

o
2
1 0 0

0 o2
0 0

0 0 o
2
1

0B@
1CA: ð5:14Þ
The solution procedure for the first mode m = 0 amounts therefore to transforming the source term f0 by
means of matrix H0, followed by the solution of the three uncoupled equations and by the inverse transfor-
mation, as follows
f 1
�1

f 2
0

f 3
1

0B@
1CA ¼ H0

f r
0

f h
0

f /
0

0B@
1CA; �o2

1u1
�1 ¼ f 1

�1ðr; hÞ;
�o

2
0u2

0 ¼ f 2
0 ðr; hÞ;

�o2
1u3

1 ¼ f 3
1 ðr; hÞ;

ur
0

uh
0

u/
0

0B@
1CA ¼ H0

u1
�1

u2
0

u3
1

0B@
1CA: ð5:15Þ
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The truncated version of Fourier expansion (5.2) is given by taking the upper summation extreme equal to
Mt � 1 so that the term uMt of the vector expansion is absent.

After the uncoupling, the new scalar unknowns are expanded in the associated Legendre functions, as done
for the scalar problem.For the general modes with m 6¼ 0 the expansion is
Table
Vector

N = M

15
20
25
30
35
40
45
50

Exact
u1
m�1ðr; hÞ ¼

XMt

‘¼jm�1j
um�1;1
‘ ðrÞbP jm�1j

‘ ðcos hÞ;

u2
mðr; hÞ ¼

XMt

‘¼jmj
um;2
‘ ðrÞbP jmj‘ ðcos hÞ;

u3
mþ1ðr; hÞ ¼

XMt

‘¼jmþ1j
umþ1;3
‘ ðrÞbP jmþ1j

‘ ðcos hÞ;

ð5:16Þ
and the same expressions with m = 0 apply also to the first special vector mode m = 0.

5.3. Numerical results

To test the spectral solvers for the vector Dirichlet problem in spherical domains, the exact solution must be
constructed so as to give an infinitely differentiable vector field also on the z axis, including the origin which is
the sphere center. This requires to define the vector field in terms of its Cartesian components, in addition to be
a function of the Cartesian coordinates. In our tests the exact solution is chosen to be the vector field defined
as follows:
ux ¼ ep1ðx�x1Þ2þq1ðy�y1Þ2þz�z1

uy ¼ ep2ðx�x2Þ2þq2ðy�y2Þ2þz�z2

uz ¼ ep3ðx�x3Þ2þq3ðy�y3Þ2þz�z3
with all the parameters given by
p1 ¼ 0:5; q1 ¼ 1:2; x1 ¼ 0:1; y1 ¼ 0:2; z1 ¼ 0:3;

p2 ¼ 0:7; q2 ¼ 1:4; x2 ¼ 0:2; y2 ¼ 0:3; z2 ¼ 0:4;

p3 ¼ 0:9; q3 ¼ 1:6; x3 ¼ 0:3; y3 ¼ 0:4; z3 ¼ 0:5:
The L2
w norm of a vector function is defined, as it is standard, by
kuk2
L2

w
¼ kurk2

L2
w
þ kuhk2

L2
w
þ ku/k2

L2
w
:

5.3.1. Spherical gap
The errors of the spectral solutions in the spherical gap 0.5 6 r 6 1.5 are reported in Table 12 and dem-

onstrate the spectral convergence of the uncoupled vector solver.
12
Dirichlet problem for Helmholtz operator with c = 1.5 in the spherical gap 0.5 6 r 6 1.5

t L1 error L2
w error

1.7 · 10�3 1.1 · 10�3

7.1 · 10�6 4.3 · 10�6

1.5 · 10�8 8.7 · 10�9

1.4 · 10�11 9.6 · 10�12

1.6 · 10�12 6.2 · 10�13

3.3 · 10�12 9.0 · 10�13

4.1 · 10�12 1.1 · 10�12

2.3 · 10�12 7.0 · 10�13

solution: see the text.



Table 13
Vector Dirichlet problem for Helmholtz operator with c = 1.5 inside the unit sphere q 6 1

Mt L1 error L2
w error

15 6.1 · 10�2 2.8 · 10�2

20 4.8 · 10�4 1.8 · 10�4

30 2.8 · 10�9 1.0 · 10�9

40 7.2 · 10�12 4.4 · 10�12

50 1.3 · 10�11 1.3 · 10�11

Exact solution: see the text.
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5.3.2. Sphere

The uncoupled algorithm can be used also in the case of a spherical domain. In this case the lifted matrix
for the scalar problems of the different spectral components is A = D + cM , so that the uncoupled scalar
equations for the vector unknown will be
A um�1;1 ¼ gm�1;1 � As am�1;1;

A um;2 ¼ gm;2 � As am;2;

A umþ1;3 ¼ gmþ1;3 � As amþ1;3:
The errors of the spectral solutions with c = 1.5 of the vector Dirichlet problem in the unit sphere q 6 1 with
pi = i and qi = i + 1, for i = 1,2,3, are reported in Table 13. These results demonstrate the spectral convergence
of a vector solution arbitrarily defined up to the center of the sphere.

6. Conclusion

In this paper a suite of Galerkin spectral solvers for scalar and vector Helmholtz equations in spherical
coordinates has been presented. The ultimate aim of our effort is to build a full set of spectral algorithms suit-
able for the numerical solution of the incompressible Navier–Stokes equations in spherical domains by means
of fractional step projection method, as done for rectangular domains in [2]. This method requires in fact to
solve at each time step a Poisson equation supplemented by Neumann boundary condition for the pressure
and a vector Helmholtz equation supplemented typically by Dirichlet conditions on the spherical boundaries
for the velocity. Three bases have been presented, depending on the kind of boundary conditions to be satis-
fied and on whether the computational domain is a sphere or a spherical gap. For the Neumann scalar prob-
lem in the spherical gap, a simple rescaling of Legendre polynomials has been adopted as the basis function,
while for the Dirichlet problem one of the bases proposed in [15] has been employed. In the case of the full
sphere including the center, a new Jacobi one-sided basis has been adopted for both Neumann and Dirichlet
problems.

The basic idea underlying the new spectral solvers for the spherical domain is that, exactly as fewer asso-
ciated Legendre functions are needed for the approximate representation of latitudinal variations of higher
Fourier modes, also fewer Jacobi polynomials are needed for the resolution of the radial structure of higher
latitudinal modes. This simple principle leads to an optimal truncation scheme for the finite spectral approx-
imation of functions behaving analytically inside a sphere, in the sense that the number of required degrees of
freedom is minimal. From the algorithmic viewpoint, a peculiarity of the proposed elliptic solvers is that linear
systems of decreasing order are involved in the solution of the radial spectral equations associated with higher
latitudinal, and therefore also longitudinal, modes. As a final result, the Jacobi basis employed here to resolve
radial variations of the solution does not face any difficulty with the sphere centre much in the same manner
the spherical harmonic functions suffer no problem on the polar axis.

In all Dirichlet problems considered in this paper, nonhomogeneous boundary values are accounted for by
means of a lifting implemented at the discrete level. As far as the solution of the vector Dirichlet problem is
concerned, an original uncoupled solution algorithm has been implemented which is based on the solution of
scalar and real equations only and which is effective to provide spectrally convergent values of the vector field
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up to the polar axis and the sphere centre. Remarkably enough, for the simulation of unsteady incompressible
flows inside a sphere, the proposed spectral basis, thanks to its ability to satisfy all the regularity conditions at
the centre, is devoid of any over resolution there and is expected to free the time integration from severe time
step restrictions.
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